A suite of genome-engineered hepatic cells provides novel insights into the spatiotemporal metabolism of apolipoprotein B and apolipoprotein B-containing lipoprotein secretion

一组基因组工程肝细胞为载脂蛋白 B 的时空代谢和含载脂蛋白 B 的脂蛋白分泌提供了新的见解

阅读:5
作者:Amber Meurs, Klevis Ndoj, Marlene van den Berg, Goran Marinković, Matteo Tantucci, Tineke Veenendaal, Jan Albert Kuivenhoven, Judith Klumperman, Noam Zelcer

Aims

Apolipoprotein B (APOB)-containing very LDL (VLDL) production, secretion, and clearance by hepatocytes is a central determinant of hepatic and circulating lipid levels. Impairment of any of the aforementioned processes is associated with the development of multiple diseases. Despite the discovery of genes and processes that govern hepatic VLDL metabolism, our understanding of the different mechanistic steps involved is far from complete. An impediment to these studies is the lack of tractable hepatocyte-based systems to interrogate and follow APOB in cells, which the current study addresses.

Conclusions

In summary, the engineered cells reported here allow the study of hepatic VLDL assembly and secretion and facilitate spatiotemporal interrogation induced by pharmacologic and genetic perturbations.

Results

To facilitate the cellular study of VLDL metabolism, we generated human hepatic HepG2 and Huh-7 cell lines in which CRISPR/Cas9-based genome engineering was used to introduce the fluorescent protein mNeonGreen into the APOB gene locus. This results in the production of APOB100-mNeon that localizes predominantly to the endoplasmic reticulum (ER) and Golgi by immunofluorescence and electron microscopy imaging. The production and secretion of APOB100-mNeon can be quantitatively followed in medium over time and results in the production of lipoproteins that are taken up via the LDL receptor pathway. Importantly, the production and secretion of APOB-mNeon is sensitive to established pharmacological and physiological treatments and to genetic modifiers known to influence VLDL production in humans. As a showcase, we used HepG2-APOBmNeon cells to interrogate ER-associated degradation of APOB. The use of a dedicated sgRNA library targeting all established membrane-associated ER-resident E3 ubiquitin ligases led to the identification of SYNV1 as the E3 responsible for the degradation of poorly lipidated APOB in HepG2 cells. Conclusions: In summary, the engineered cells reported here allow the study of hepatic VLDL assembly and secretion and facilitate spatiotemporal interrogation induced by pharmacologic and genetic perturbations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。