Structural analogs of pulmonary surfactant phosphatidylglycerol inhibit toll-like receptor 2 and 4 signaling

肺表面活性物质磷脂酰甘油的结构类似物抑制 Toll 样受体 2 和 4 信号传导

阅读:9
作者:Pitchaimani Kandasamy, Mari Numata, Karin Zemski Berry, Rachel Fickes, Christina C Leslie, Robert C Murphy, Dennis R Voelker

Abstract

The pulmonary surfactant phospholipid, 1-palmitoyl-2-oleoylphosphatidylglycerol (POPG), potently inhibits toll-like receptor (TLR)2 and TLR4 signaling from the cell surface of macrophages. Analogs of POPG that vary in polar head group length, hydroxylation, and alkyl branching were synthesized using a phospholipase D-catalyzed transphosphatidylation reaction and a 1-palmitoyl-2-oleoyl phosphatidylcholine substrate. Lipid analogs with C3 and C4 alkyl head group length (POP-propanol and POP-butanol) are less effective than POPG as TLR2 and TLR4 antagonists. However, adding a hydroxyl group at the alkyl chain 3- or 4-position (POP-propanediols or POP-butanediols) greatly increased their inhibitory effects against TLR2 and TLR4. POP-2',2'-dimethylpropanediol is a weak inhibitor of TLR2 and TLR4 activation that results in arachidonic acid release, but an effective inhibitor of TLR4 activation that results in TNF-α production. Addition of an amino group at the alkyl-2 position (POP-2'-aminopropanediol) completely abolished the antagonism of TLRs 2 and 4. Multiple analogs strongly bind to the TLR4 coreceptors, cluster of differentiation 14 (CD14) and myeloid differentiation 2, but competition for di[3-deoxy-D-manno-octulosonyl]-lipid A binding to CD14 is the best predictor of biological activity at the cellular level. Collectively, these findings identify new compounds for antagonizing TLR2 and TLR4 activation and define structural properties of POPG analogs for discriminating between two TLR systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。