Role of 53BP1 oligomerization in regulating double-strand break repair

53BP1 寡聚化在调节双链断裂修复中的作用

阅读:9
作者:Francisca Lottersberger, Anne Bothmer, Davide F Robbiani, Michel C Nussenzweig, Titia de Lange

Abstract

Tumor suppressor p53-binding protein 1 (53BP1) regulates the repair of dysfunctional telomeres lacking the shelterin protein TRF2 by promoting their mobility, their nonhomologous end-joining (NHEJ), and, as we show here, by blocking 5' resection by CtIP. We report that these functions of 53BP1 required its N-terminal ATM/ATR target sites and its association with H4K20diMe, but not the BRCT domain, the GAR domain, or the binding of 53BP1 to dynein. A mutant lacking the oligomerization domain (53BP1(oligo)) was only modestly impaired in promoting NHEJ of dysfunctional telomeres and showed no defect with regard to the repression of CtIP. This 53BP1(oligo) allele was previously found to be unable to support class switch recombination or to promote radial chromosome formation in PARP1 inhibitor-treated Brca1-deficient cells. The data therefore support two conclusions. First, the requirements for 53BP1 in mediating NHEJ at dysfunctional telomeres and in class switch recombination are not identical. Second, 53BP1-dependent repression of CtIP at double-strand breaks (DSBs) is unlikely to be sufficient for the generation of radial chromosomes in PARP1 inhibitor-treated Brca1-deficient cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。