MUC1 promotes lymph node metastasis in esophageal squamous cell carcinoma by downregulating DNAJB6 expression

MUC1通过下调DNAJB6表达促进食管鳞状细胞癌淋巴结转移

阅读:4
作者:Guanqiang Ma, Xiangyan Liu, Mo Shi

Background

Aberrant expression of MUC1 correlates with the progression of esophageal squamous cell carcinoma (ESCC), this study aimed to explore the effect of targeting MUC1 by Go-203 on malignant behavior of ESCC and the underlying mechanism.

Conclusions

This study indicated that MUC1 could promote tumorigenesis and metastasis in ESCC by downregulating DNAJB6 expression through AKT-HSF-1 pathway.

Results

IHC was used to examine the expression of MUC1 and DNAJB6 in ESCC samples. qRT-PCR and western blotting were used to examine the expression of MUC1 and DNAJB6 in ESCC cell lines. CCK8, wound healing, and transwell assays were used to determine the effect of regulating MUC1/DNAJB6 on the proliferation, migration, and invasion of ESCC cells. The effect of overexpressing/targeting MUC1 on the activation of the AKT/HSF-1 pathway was determined by western blotting. A negative correlation was confirmed between the expression of DNAJB6 and MUC1 in ESCC tissue samples by IHC, and high expression of MUC1 and low expression of DNAJB6 correlated with lymph node metastasis in ESCC patients. Overexpressing MUC1 downregulated the expression of DNAJB6, promoted ESCC proliferation, invasion, migration and activated the AKT pathway, while targeting MUC1 suppressed proliferation, invasion, migration, and the AKT pathway and up-regulated DNAJB6 expression in vitro. Moreover, MUC1 increased the phosphorylation of HSF-1 via the AKT pathway, and inhibiting AKT-HSF-1 increased the expression of DNAJB6 in vitro. Conclusions: This study indicated that MUC1 could promote tumorigenesis and metastasis in ESCC by downregulating DNAJB6 expression through AKT-HSF-1 pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。