Sensing Volatile Pollutants with Spin-Coated Films Made of Pillar[5]arene Derivatives and Data Validation via Artificial Neural Networks

利用柱状[5]芳烃衍生物旋涂膜感测挥发性污染物并通过人工神经网络进行数据验证

阅读:9
作者:Ahmed Nuri Kursunlu, Yaser Acikbas, Ceren Yilmaz, Mustafa Ozmen, Inci Capan, Rifat Capan, Kemal Buyukkabasakal, Ahmet Senocak

Abstract

Different types of solvents, aromatic and aliphatic, are used in many industrial sectors, and long-term exposure to these solvents can lead to many occupational diseases. Therefore, it is of great importance to detect volatile organic compounds (VOCs) using economic and ergonomic techniques. In this study, two macromolecules based on pillar[5]arene, named P[5]-1 and P[5]-2, were synthesized and applied to the detection of six different environmentally volatile pollutants in industry and laboratories. The thin films of the synthesized macrocycles were coated by using the spin coating technique on a suitable substrate under optimum conditions. All compounds and the prepared thin film surfaces were characterized by NMR, Fourier transform infrared (FT-IR), elemental analysis, atomic force microscopy (AFM), scanning electron microscopy (SEM), and contact angle measurements. All vapor sensing measurements were performed via the surface plasmon resonance (SPR) optical technique, and the responses of the P[5]-1 and P[5]-2 thin-film sensors were calculated with ΔI/Io × 100. The responses of the P[5]-1 and P[5]-2 thin-film sensors to dichloromethane vapor were determined to be 7.17 and 4.11, respectively, while the responses to chloroform vapor were calculated to be 5.24 and 2.8, respectively. As a result, these thin-film sensors showed a higher response to dichloromethane and chloroform vapors than to other harmful vapors. The SPR kinetic data for vapors validated that a nonlinear autoregressive neural network was performed with exogenous input for the best molecular modeling by using normalized reflected light intensity values. It can be clearly seen from the correlation coefficient values that the nonlinear autoregressive with exogenous input artificial neural network (NARX-ANN) model for dichloromethane converged more successfully to the experimental data compared to other gases. The correlation coefficient values of the dichloromethane modeling results were approximately 0.99 and 0.98 for P[5]-1 and P[5]-2 thin-film sensors, respectively.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。