Controlled Decompression Attenuates Brain Injury in a Novel Rabbit Model of Acute Intracranial Hypertension

控制减压可减轻新型兔急性颅内高压模型中的脑损伤

阅读:7
作者:Haoxiang Guan, Can Zhang, Tao Chen, Jie Zhu, Shuo Yang, Longfei Shu, Wei Shen, Yuhai Wang

Abstract

BACKGROUND In the past, standard rapid decompressive craniectomy was used to alleviate the secondary damage caused by high intracranial pressure. Recent clinical studies showed that controlled decompression may have a better curative effect than rapid decompression. However, the effect on controlled decompression in animals is unclear. MATERIAL AND METHODS Totally 80 healthy male New Zealand rabbits were randomly divided into a sham group (n=20), a rapid decompression group (n=30), and a controlled decompression group (n=30). An intracranial hypertension model was induced by injecting saline into an epidural balloon catheter and reducing ICP slowly and gradually by use of a pressure pump. The model was evaluated and analyzed by general observations, imaging examination, ICP values, behavioral score, brain water content, Nissl staining, and caspase-3 protein detection. RESULTS The mortality rate was 36.7% (11/30) in the rapid group, 20% (6/30) in the controlled group, and 5% (1/20) in the sham group. The incidence of epidural hematoma in the controlled group was lower than in the rapid group (p<0.01). The ICP was significantly lower in the controlled group than in the rapid group (p<0.001), and the behavioral score in the rapid group was higher than in the controlled group (p<0.05). There was a marked difference in brain water content between the controlled group and the rapid group (p<0.01). Nissl staining demonstrated that the ratio of Nissl body in the controlled group was significantly higher than in the rapid group (p<0.01). WB detection showed the expression of Caspase-3 in the controlled group was lower than in the rapid group (p<0.05). CONCLUSIONS The results show the advantages of use of controlled decompression with intracranial hypertension. The animal model we developed provides a platform for further research on controlled decompression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。