Trophic transfer of polyunsaturated fatty acids across the aquatic-terrestrial interface: An experimental tritrophic food chain approach

多不饱和脂肪酸在水生-陆地界面的营养转移:一种实验性的三营养食物链方法

阅读:5
作者:Katharina Ohler, Verena C Schreiner, Dominik Martin-Creuzburg, Ralf B Schäfer

Abstract

Aquatic and their adjacent terrestrial ecosystems are linked via the flux of organic and inorganic matter. Emergent aquatic insects are recognized as high-quality food for terrestrial predators, because they provide more physiologically relevant long-chain polyunsaturated fatty acids (PUFA) than terrestrial insects. The effects of dietary PUFA on terrestrial predators have been explored mainly in feeding trials conducted under controlled laboratory conditions, hampering the assessment of the ecological relevance of dietary PUFA deficiencies under field conditions. We assessed the PUFA transfer across the aquatic-terrestrial interface and the consequences for terrestrial riparian predators in two outdoor microcosm experiments. We established simplified tritrophic food chains, consisting of one of four basic food sources, an intermediary collector gatherer (Chironomus riparius, Chironomidae), and a riparian web-building spider (Tetragnatha sp.). The four basic food sources (algae, conditioned leaves, oatmeal, and fish food) differed in PUFA profiles and were used to track the trophic transfer of single PUFA along the food chain and to assess their potential effects on spiders, that is, on fresh weight, body condition (size-controlled measurement of nutritional status), and immune response. The PUFA profiles of the basic food sources, C. riparius and spiders differed between treatments, except for spiders in the second experiment. The PUFA α-linolenic acid (ALA, 18:3n-3) and ɣ-linolenic acid (GLA, 18:3n-6) were major contributors to the differences between treatments. PUFA profiles of the basic food sources influenced the fresh weight and body condition of spiders in the first experiment, but not in the second experiment, and did not affect the immune response, growth rate, and dry weight in both experiments. Furthermore, our results indicate that the examined responses are dependent on temperature. Future studies including anthropogenic stressors would deepen our understanding of the transfer and role of PUFA in ecosystems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。