Intracellular two-phase Ca2+ release and apoptosis controlled by TRP-ML1 channel activity in coronary arterial myocytes

冠状动脉肌细胞TRP-ML1通道活性控制细胞内双相Ca2+释放与细胞凋亡

阅读:5
作者:Ming Xu, Xiaoxue Li, Scott W Walsh, Yang Zhang, Justine M Abais, Krishna M Boini, Pin-Lan Li

Abstract

Activation of the death receptor Fas has been reported to produce a two-phase intracellular Ca(2+) release response in coronary arterial myocytes (CAMs), which consists of local Ca(2+) bursts via lysosomal transient potential receptor-mucolipin 1 (TRP-ML1) channels and consequent Ca(2+) release from the sarcoplasmic reticulum (SR). The present study was designed to explore the molecular mechanism by which lysosomal Ca(2+) bursts are coupled with SR Ca(2+) release in mouse CAMs and to determine the functional relevance of this lysosome-associated two-phase Ca(2+) release to apoptosis, a common action of Fas activation with Fas ligand (FasL). By confocal microscopy, we found that transfection of CAMs with TRP-ML1 small interfering (si)RNA substantially inhibited FasL (10 ng/ml)-induced lysosome Ca(2+) bursts and consequent SR Ca(2+) release. In contrast, transfection of CAMs with plasmids containing a full-length TRP-ML1 gene enhanced FasL-induced two-phase Ca(2+) release. We further demonstrated that FasL significantly increased the colocalization of the lysosomal marker Lamp1 with ryanodine receptor 3 and enhanced a dynamic trafficking of lysosomes to the SR. When CAMs were treated with TRP-ML1 siRNA, FasL-induced interactions between the lysosomes and SR were substantially blocked. Functionally, FasL-induced apoptosis and activation of calpain and calcineurin, the Ca(2+) sensitive proteins that mediate apoptosis, were significantly attenuated by silencing TRP-ML1 gene but enhanced by overexpression of TRP-ML1 gene. These results suggest that TRP-ML1 channel-mediated lysosomal Ca(2+) bursts upon FasL stimulation promote lysosome trafficking and interactions with the SR, leading to apoptosis of CAMs via a Ca(2+)-dependent mechanism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。