Dietary sanguinarine supplementation recovers the decrease in muscle quality and nutrient composition induced by high-fat diets of grass carp (Ctenopharyngodon idella)

膳食补充血根碱可恢复草鱼(Ctenopharyngodon idella)高脂饮食引起的肌肉质量和营养成分下降

阅读:7
作者:Yong Shi, Lei Zhong, Yuanxiang Liu, Shude Xu, Jihong Dai, Yaozhengtai Zhang, Yi Hu

Abstract

The intake of high-fat diets (HFD) has been shown to diminish the muscle quality of aquatic animals. Sanguinarine, as an excellent additive, exhibits the capability to reduce fat deposition and alleviate inflammation. However, its role in the muscle quality reduction caused by HFD remains unclear. An eight-week trial was conducted to investigate the impacts of dietary supplementation of sanguinarine at 1200 μg/kg (HFDS; crude fat = 10%) on the muscle quality of grass carp (Ctenopharyngodon idellus) in comparison to a basic diet (CON, crude fat = 5%). Each group had 3 replicates, with 40 fish per replicate. This experiment employed one-way ANOVA and Duncan's multiple comparisons of the means. The results showed that the HFD exhibited lower growth performance, reduced protein deposition, myofiber diameter, and muscle hardness, coupled with higher levels of fat deposition and inflammation when compared with the CON. However, HFDS improved growth performance (P < 0.05), fat metabolism (ppar-α ( P = 0.001), lpl (P < 0.001), atgl (P < 0.001), and cpt1 (P = 0.001) expression exhibited a significant elevation), protein deposition (the protein and mRNA levels of AKT (P = 0.004), PI3K (P = 0.027), TOR (P = 0.005), and P70S6K (P = 0.007) demonstrated a marked increase), myofiber diameter, muscle hardness, and the total content of eicosapentaenoic acid and docosahexaenoic acid. Furthermore, the HFDS reduced oxidative damage caused by fat deposition by significantly downregulating nf-κb (P < 0.001), il-1β (P < 0.001), il-6 (P < 0.001), il-8 (P = 0.003), and tnf-α (P < 0.001) expression and markedly upregulated nrf2 (P < 0.001), gpx4 (P < 0.001), cat (P < 0.001), sod (P < 0.001), and gr (P = 0.003) expression. The findings from this study suggest that sanguinarine has the potential to alleviate the adverse effects of HFD on growth and muscle quality, providing a theoretical foundation for its practical implementation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。