Chronic basal forebrain activation improves spatial memory, boosts neurotrophin receptor expression, and lowers BACE1 and Aβ42 levels in the cerebral cortex in mice

慢性基底前脑激活可改善小鼠的空间记忆、促进神经营养因子受体表达并降低大脑皮层中的 BACE1 和 Aβ42 水平

阅读:9
作者:Jacob Kumro, Ashutosh Tripathi, Yun Lei, Jeremy Sword, Patrick Callahan, Alvin Terry, Xin-Yun Lu, Sergei A Kirov, Anilkumar Pillai, David T Blake

Abstract

The etiology of Alzheimer's dementia has been hypothesized in terms of basal forebrain cholinergic decline, and in terms of reflecting beta-amyloid neuropathology. To study these different biological elements, we activated the basal forebrain in 5xFAD Alzheimer's model mice and littermates. Mice received 5 months of 1 h per day intermittent stimulation of the basal forebrain, which includes cholinergic projections to the cortical mantle. Then, mice were behaviorally tested followed by tissue analysis. The 5xFAD mice performed worse in water-maze testing than littermates. Stimulated groups learned the water maze better than unstimulated groups. Stimulated groups had 2-3-fold increases in frontal cortex immunoblot measures of the neurotrophin receptors for nerve growth factor and brain-derived neurotrophic factor, and a more than 50% decrease in the expression of amyloid cleavage enzyme BACE1. Stimulation also led to lower Aβ42 in 5xFAD mice. These data support a causal relationship between basal forebrain activation and both neurotrophin activation and reduced Aβ42 generation and accumulation. The observation that basal forebrain activation suppresses Aβ42 accumulation, combined with the known high-affinity antagonism of nicotinic receptors by Aβ42, documents bidirectional antagonism between acetylcholine and Aβ42.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。