Decreased Adiponectin-Mediated Signaling Through the AdipoR2 Pathway Is Associated With Carotid Plaque Instability

通过 AdipoR2 通路的脂联素介导信号传导减少与颈动脉斑块不稳定有关

阅读:6
作者:Karina Gasbarrino, Huaien Zheng, Anouar Hafiane, John P Veinot, Chi Lai, Stella S Daskalopoulou

Background and purpose

Adiponectin, the most abundantly secreted anti-inflammatory adipokine, protects against all stages of atherosclerotic plaque formation by acting on its receptors, AdipoR1 (adiponectin receptor 1) and AdipoR2 (adiponectin receptor 2). Through binding of AdipoR1, adiponectin leads to the activation of the AMPK (adenosine monophosphate-activated protein kinase) pathway, whereas stimulation of PPAR-α (peroxisome proliferator-activated receptor-α) is attributed to the binding of AdipoR2. However, the role of adiponectin and its receptors in plaque instability remains to be characterized. Thus, we aimed to investigate whether the adiponectin-AdipoR pathway is associated with carotid atherosclerotic plaque instability.

Conclusions

An overall abundance of adiponectin with a decrease in AdipoR2 expression and activity was observed in unstable plaques, suggesting that reduced signaling through the AdipoR2 pathway, and not through AdipoR1, may contribute to plaque instability.

Methods

The instability of plaque specimens obtained from patients who underwent a carotid endarterectomy (n=143) was assessed using gold standard histological classifications.

Purpose

Adiponectin, the most abundantly secreted anti-inflammatory adipokine, protects against all stages of atherosclerotic plaque formation by acting on its receptors, AdipoR1 (adiponectin receptor 1) and AdipoR2 (adiponectin receptor 2). Through binding of AdipoR1, adiponectin leads to the activation of the AMPK (adenosine monophosphate-activated protein kinase) pathway, whereas stimulation of PPAR-α (peroxisome proliferator-activated receptor-α) is attributed to the binding of AdipoR2. However, the role of adiponectin and its receptors in plaque instability remains to be characterized. Thus, we aimed to investigate whether the adiponectin-AdipoR pathway is associated with carotid atherosclerotic plaque instability.

Results

Using immunohistochemistry, we showed that adiponectin and AdipoR1/AdipoR2 are expressed in human carotid plaques and that their expression was localized most abundantly in areas of macrophage and foam cell accumulation. Unstable plaques expressed more adiponectin protein (Western blot, P<0.05) and less AdipoR2 mRNA (2.11-fold decrease, P<0.05) than stable plaques, whereas AdipoR1 expression remained similar between stable and unstable plaques. Beyond AdipoR1/AdipoR2 expression, a graded decrease in PPAR-α protein levels was observed in relation to carotid plaque instability (P<0.001), whereas AMPK phosphorylation was increased (P<0.05). Our in vitro model of plaque instability, involving the induction of foam cells from human THP-1 (Tamm-Horsfall protein 1) macrophages treated with acetylated low-density lipoprotein, supported our in vivo conclusions. Conclusions: An overall abundance of adiponectin with a decrease in AdipoR2 expression and activity was observed in unstable plaques, suggesting that reduced signaling through the AdipoR2 pathway, and not through AdipoR1, may contribute to plaque instability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。