Targeted degradation of KRAS by an engineered ubiquitin ligase suppresses pancreatic cancer cell growth in vitro and in vivo

通过工程化泛素连接酶靶向降解 KRAS 可在体内和体外抑制胰腺癌细胞生长

阅读:6
作者:Yihui Ma, Yumei Gu, Qiang Zhang, Yongqing Han, Shuangni Yu, Zhaohui Lu, Jie Chen

Abstract

KRAS is an attractive pancreatic ductal adenocarcinoma (PDAC) therapeutic target. E3 ligase is thought to be the component of the ubiquitin conjugation system that is directly responsible for substrate recognition. In this study, an engineered E3 ubiquitin ligase (RC-U) was generated to target the KRAS oncoprotein for ubiquitination and degradation. The engineered E3 ubiquitin ligases (RC-U) were constructed (pRC-U and lentivirus-expressing RC-U). After transfecting the pRC-U plasmid into human pancreatic cancer cells, KRAS expression levels were determined. KRAS expression was also evaluated in cells transfected with pRC-U and treated with MG-132 or cycloheximide. Interactions between RC-U and KRAS as well as whether RC-U could ubiquitinate KRAS were investigated. Extracellular signal-regulated kinase 1/2 (ERK1/2) and phosphorylated ERK 1/2 (pERK1/2) levels were examined in pancreatic cancer cells transfected with pRC-U. The effects of RC-U on pancreatic cancer cell growth were assessed. RC-U decreased KRAS protein levels. After pRC-U transfection, KRAS stability was increased in the presence of MG-132. HEK 293T cells were transfected with a mutant KRAS construct together with pRC-U and incubated with cycloheximide to inhibit new protein synthesis. The exogenous mutant KRAS oncoprotein was degraded more quickly. RC-U can bind KRAS and KRAS can be ubiquitinated by RC-U. pERK1/2 protein levels were decreased. RC-U resulted in reduced cell proliferation in vitro and in vivo. KRAS destruction by RC-U occurred through a ubiquitin-dependent, proteasome-mediated degradation pathway. RC-U inhibited pancreatic cancer cell growth in vitro and in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。