Ligusticum chuanxiong Hort. Ameliorates Neuropathic Pain by Regulating Microglial M1 Polarization: A Study Based on Network Pharmacology

川芎通过调节小胶质细胞 M1 极化改善神经性疼痛:基于网络药理学的研究

阅读:7
作者:Shanshan Cui, Xiaobo Feng, Zhongyuan Xia

Background

In traditional Chinese medicine, Ligusticum chuanxiong Hort. (LCH) is used to treat neuropathic pain (NP). This study was performed to investigate the underlying pharmacological mechanisms.

Conclusion

This study provides a theoretical basis for the application of LCH in the treatment of NP through multicomponent, multitarget, and multiple pathways.

Methods

The main components of the LCH were obtained from the TCMSP database. The targets of the active components were obtained using the Swiss Target Prediction database and HERB database. The NP-related genes were obtained from the CTD database and GeneCard database. Protein-protein interaction (PPI) network was constructed using the STRING platform and Cytoscape 3.9.0 software. GO and KEGG enrichment analyses were performed using the DAVID database. Interactions between the key components and hub target proteins were verified using molecular docking and molecular dynamics simulation. In addition, microglial cell line HMC3 was induced to polarize to the M1 phenotype using 100 ng/mL lipopolysaccharide (LPS). Quantitative real-time polymerase chain reaction (qRT-PCR), Western blot and enzyme-linked immunosorbent assays were used to detect the expression levels of M1 markers and inflammatory factors, respectively.

Results

Seven LCH active components of LCH were identified, corresponding to 387 target genes. 2019 NP-related genes were obtained, and a total of 174 NP-related genes were identified as target genes that could be modulated by LCH. Beta-sitosterol, senkyunone, wallichilide, myricanone, and mandenol were considered as the key components of LCH in the treatment of NP. SRC, BCL2, AKT1, HIF1A and HSP90AA1 were identified as the hub target proteins. GO analysis showed that 328 biological processes, 61 cell components, and 85 molecular functions were likely modulated by the components of LCH, and KEGG enrichment analysis showed that 132 signaling pathways were likely modulated by the components of LCH. Beta-sitosterol, senkyunone, wallichilide, myricanone, and mandenol showed good binding activity with hub target proteins including SRC, BCL2, AKT1, and HSP90AA1. In addition, beta-sitosterol inhibited LPS-induced M1 polarization in HMC3 in vitro.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。