Epigallocatechingallate attenuates myocardial injury in a mouse model of heart failure through TGF‑β1/Smad3 signaling pathway

表没食子儿茶素没食子酸酯通过 TGF-β1/Smad3 信号通路减轻心力衰竭小鼠模型中的心肌损伤

阅读:7
作者:Keyan Chen, Wei Chen, Shi Li Liu, Tian Shi Wu, Kai Feng Yu, Jing Qi, Yijun Wang, Hui Yao, Xiao Yang Huang, Ying Han, Ping Hou

Abstract

The present study aimed to assess the protective effect of epigallocatechingallate (EGCG) against myocardial injury in a mouse model of heart failure and to determine the mechanism underlying regulation of the transforming growth factor‑β1/mothers against decapentaplegic homolog 3 (TGF‑β1/Smad3) signaling pathway. Mouse models of heart failure were established. Alterations in ejection fraction, left ventricular internal diastolic diameter (LVIDd) and left ventricular internal systolic diameter (LVIDs) were measured by echocardiography. Pathological alterations of myocardial tissue were determined by hematoxylin and eosin, and Masson staining. The levels of serum brain natriuretic peptide (BNP), N‑terminal‑proBNP, interleukin (IL)‑1β, IL‑6, tumor necrosis factor‑α, malondialdehyde, superoxide dismutase and glutathione peroxidase were detected with ELISA. Expression of collagen I, collagen III were detected by western blotting and reverse transcription quantitative polymerase chain reaction. Transforming growth factor‑β1 (TGF‑β1), Smad3, phosphorylated (p)‑Smad3, apoptosis regulator BAX (Bax), caspase‑3 and apoptosis regulator Bcl2 in mouse cardiac tissue were measured by western blotting. P‑smad3 and TGF‑β1 were measured by immunofluorescence staining. EGCG reversed the alterations in LVIDd and LVIDs induced by establishment of the model of heart failure, increased ejection fraction, inhibited myocardial fibrosis, attenuated the oxidative stress, inflammatory and cardiomyocyte apoptosis and lowered the expression levels of collagen I and collagen III. Following treatment with TGF‑β1 inhibitor, the protective effect of EGCG against heart failure was attenuated. The results of the present study demonstrated that EGCG can inhibit the progression and development of heart failure in mice through inhibition of myocardial fibrosis and reduction of ventricular collagen remodeling. This protective effect of EGCG is likely mediated through inhibition of TGF‑β1/smad3 signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。