Inflammatory cell-derived CXCL3 promotes pancreatic cancer metastasis through a novel myofibroblast-hijacked cancer escape mechanism

炎症细胞衍生的 CXCL3 通过一种新的肌成纤维细胞劫持癌症逃逸机制促进胰腺癌转移

阅读:9
作者:Xiaoting Sun, Xingkang He, Yin Zhang, Kayoko Hosaka, Patrik Andersson, Jing Wu, Jieyu Wu, Xu Jing, Qiqiao Du, Xiaoli Hui, Bo Ding, Ziheng Guo, An Hong, Xuan Liu, Yan Wang, Qing Ji, Rudi Beyaert, Yunlong Yang, Qi Li, Yihai Cao

Conclusions

Our work provides novel mechanistic insights into understanding PDAC metastasis by the TAM-CAF interaction and targeting each of these signalling components would provide an attractive and new paradigm for treating pancreatic cancer.

Objective

Pancreatic ductal adenocarcinoma (PDAC) is the most lethal malignancy and lacks effective treatment. We aimed to understand molecular mechanisms of the intertwined interactions between tumour stromal components in metastasis and to provide a new paradigm for PDAC therapy. Design: Two unselected cohorts of 154 and 20 patients with PDAC were subjected to correlation between interleukin (IL)-33 and CXCL3 levels and survivals. Unbiased expression profiling, and genetic and pharmacological gain-of-function and loss-of-function approaches were employed to identify molecular signalling in tumour-associated macrophages (TAMs) and myofibroblastic cancer-associated fibroblasts (myoCAFs). The role of the IL-33-ST2-CXCL3-CXCR2 axis in PDAC metastasis was evaluated in three clinically relevant mouse PDAC models.

Results

IL-33 was specifically elevated in human PDACs and positively correlated with tumour inflammation in human patients with PDAC. CXCL3 was highly upregulated in IL-33-stimulated macrophages that were the primary source of CXCL3. CXCL3 was correlated with poor survival in human patients with PDAC. Mechanistically, activation of the IL-33-ST2-MYC pathway attributed to high CXCL3 production. The highest level of CXCL3 was found in PDAC relative to other cancer types and its receptor CXCR2 was almost exclusively expressed in CAFs. Activation of CXCR2 by CXCL3 induced a CAF-to-myoCAF transition and α-smooth muscle actin (α-SMA) was uniquely upregulated by the CXCL3-CXCR2 signalling. Type III collagen was identified as the CXCL3-CXCR2-targeted adhesive molecule responsible for myoCAF-driven PDAC metastasis. Conclusions: Our work provides novel mechanistic insights into understanding PDAC metastasis by the TAM-CAF interaction and targeting each of these signalling components would provide an attractive and new paradigm for treating pancreatic cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。