Comparison of data processing strategies using commercial vs. open-source software in GC-Orbitrap-HRMS untargeted metabolomics analysis for food authentication: thyme geographical differentiation and marker identification as a case study

食品认证 GC-Orbitrap-HRMS 非靶向代谢组学分析中使用商业软件与开源软件的数据处理策略比较:以百里香地理分化和标记物鉴定为例

阅读:6
作者:Araceli Rivera-Pérez, Antonia Garrido Frenich

Abstract

Untargeted analysis of gas chromatography-high-resolution mass spectrometry (GC-HRMS) data is a key and time-consuming challenge for identifying metabolite markers in food authentication applications. Few studies have been performed to evaluate the capability of untargeted data processing tools for feature extraction, metabolite annotation, and marker selection from untargeted GC-HRMS data since most of them are focused on liquid chromatography (LC) analysis. In this framework, this study provides a comprehensive evaluation of data analysis tools for GC-Orbitrap-HRMS plant metabolomics data, including the open-source MS-DIAL software and commercial Compound Discoverer™ software (designed for Orbitrap data processing), applied for the geographical discrimination and search for thyme markers (Spanish vs. Polish differentiation) as the case study. Both approaches showed that the feature detection process is highly affected by unknown metabolites (Levels 4-5 of identification confidence), background signals, and duplicate features that must be carefully assessed before further multivariate data analysis for reliable putative identification of markers. As a result, Compound Discoverer™ and MS-DIAL putatively annotated 52 and 115 compounds at Level 2, respectively. Further multivariate data analysis allowed the identification of differential compounds, showing that the putative identification of markers, especially in challenging untargeted analysis, heavily depends on the data processing parameters, including available databases used during compound annotation. Overall, this method comparison pointed out both approaches as good options for untargeted analysis of GC-Orbitrap-HRMS data, and it is presented as a useful guide for users to implement these data processing approaches in food authenticity applications depending on their availability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。