Polymer mesh scaffold combined with cell-derived ECM for osteogenesis of human mesenchymal stem cells

聚合物网状支架与细胞衍生的 ECM 结合用于人类间充质干细胞成骨

阅读:4
作者:Yong Kwan Noh, Ping Du, In Gul Kim, Jaehoon Ko, Seong Who Kim, Kwideok Park

Background

Tissue-engineered scaffold should mimic the structure and biological function of the extracellular matrix and have mechanically supportive properties for tissue regeneration. In this study, we utilized a PLGA/PLA mesh scaffold, coated with cell-derived extracellular matrix (CDM) and assessed its potential as an osteogenic microenvironment for human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs). CDM was obtained by decellularization of in vitro-cultured type I collagen overexpressing (Col I -293 T-DK) cells. Test groups are mesh itself (control), fibronectin-coated (FN-mesh), and CDM-coated mesh scaffold (CDM-mesh). CDM was then solubilized and used for scaffold coating.

Conclusion

Polymer mesh scaffold incorporated with CDM can provide UCB-MSCs with a better microenvironment for osteogenesis in vitro.

Results

CDM was successfully collected and applied to mesh scaffolds. The presence of CDM was confirmed via SEM and FN immunofluorescence. After then, UCB-MSCs were seeded into the scaffolds and subjected to the induction of osteogenic differentiation for 21 days in vitro. We found that the seeded cells were viable and have better proliferation activity on CDM-mesh scaffold. In addition, when osteogenic differentiation of UCB-MSCs was examined for up to 21 days, alkaline phosphatase (ALP) activity and osteogenic marker (COL I, ALP, osteocalcin, bone sialoprotein) expression were significantly improved with UCB-MSCs when cultured in the CDM-mesh scaffold compared to the control and FN-mesh.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。