Low density of FOXP3-positive T cells in normal colonic mucosa is related to the presence of beta2-microglobulin mutations in Lynch syndrome-associated colorectal cancer

正常结肠粘膜中 FOXP3 阳性 T 细胞密度低与林奇综合征相关结直肠癌中 β2-微球蛋白突变的存在有关

阅读:5
作者:Fabian Echterdiek, Jonas Janikovits, Laura Staffa, Meike Müller, Bernd Lahrmann, Monika Frühschütz, Benjamin Hartog, Nina Nelius, Axel Benner, Mirjam Tariverdian, Magnus von Knebel Doeberitz, Niels Grabe, Matthias Kloor

Abstract

Microsatellite instability (MSI-H) is caused by DNA mismatch repair deficiency and occurs in 15% of colorectal cancers. MSI-H cancers generate highly immunogenic frameshift peptide (FSP) antigens, which elicit pronounced local immune responses. A subset of MSI-H colorectal cancers develops in frame of Lynch syndrome, which represents an ideal human model for studying the concept of immunoediting. Immunoediting describes how continuous anti-tumoral immune surveillance of the host eventually leads to the selection of tumor cells that escape immune cell recognition and destruction. Between 30 and 40% of Lynch syndrome-associated colorectal cancers display loss of HLA class I antigen expression as a result of Beta2-microglobulin (B2M) mutations. Whether B2M mutations result from immunoediting has been unknown. To address this question, we related B2M mutation status of Lynch syndrome-associated colorectal cancer specimens (n = 30) to CD3-positive, CD8-positive and FOXP3-positive T cell infiltration in both tumor and normal mucosa. No significant correlation between B2M mutations and immune cell infiltration was observed in tumor tissue. However, FOXP3-positive T cell infiltration was significantly lower in normal mucosa adjacent to B2M-mutant (mt) compared to B2M-wild type (wt) tumors (mean: 0.98% FOXP3-positive area/region of interest (ROI) in B2M-wt vs. 0.52% FOXP3-positive area/ROI in B2M-mt, p = 0.023). Our results suggest that in the absence of immune-suppressive regulatory T cells (Treg), the outgrowth of less immunogenic B2M-mt tumor cells is favored. This finding supports the immunoediting concept in human solid cancer development and indicates a critical role of the immune milieu in normal colonic mucosa for the course of disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。