Structuring supramolecular hyaluronan hydrogels via peptide self-assembly for modulating the cell microenvironment

通过肽自组装构建超分子透明质酸水凝胶以调节细胞微环境

阅读:5
作者:Yichen Yuan, Yejiao Shi, Jayati Banerjee, Amin Sadeghpour, Helena S Azevedo

Abstract

The use of synthetic extracellular matrices (ECMs) in fundamental in vitro cell culture studies has been instrumental for investigating the interplay between cells and matrix components. To provide cells with a more native environment in vitro, it is desirable to design matrices that are biomimetic and emulate compositional and structural features of natural ECMs. Here, the supramolecular fabrication of peptide-hyaluronan (HA) hydrogels is presented as potential ECM surrogates, combining native HA and rationally designed cationic amphipatic peptides [(KI)nK, lysine (K), isoleucine (I), n ​= ​2-6] whose mechanical properties and microstructure are tunable by the peptide sequence. (KI)nK peptides adopt β-sheet configuration and self-assemble into filamentous nanostructures triggered by pH or ionic strength. The self-assembly propensity of (KI)nK peptides increases with the sequence length, forming single phase hydrogels (shorter peptides) or with phase separation (longer peptides) in presence of the anionic polyelectrolyte HA through electrostatic complexations. The gel phase formed in (KI)nK-HA complexes exhibits viscoelastic behavior and triggers the formation of human mesenchymal stem cell (MSC) spheroids which disassemble over the time. It is anticipated that these (KI)nK-HA hydrogels with tunable physical and biochemical properties offer a promising platform for in vitro applications and in stem cell therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。