Hyperoside Ameliorates Renal Tubular Oxidative Damage and Calcium Oxalate Deposition in Rats through AMPK/Nrf2 Signaling Axis

金丝桃苷通过 AMPK/Nrf2 信号轴改善大鼠肾小管氧化损伤及草酸钙沉积

阅读:7
作者:Hongyang Tian, Qi Liang, Zhen Shi, Hang Zhao

Background

Nephrolithiasis is a common disease that seriously affects the health and life quality of patients. Despite the reported effect of hyperoside (Hyp) against nephrolithiasis, the specific mechanism has not been clarified. Therefore, this study is aimed at investigating the effect and potential mechanism of Hyp on renal injury and calcium oxalate (CaOx) crystal deposition.

Conclusion

Hyp can improve renal pathological and functional damage, decrease CaOx crystal deposition, and inhibit oxidative stress and inflammatory response. Such effects may be achieved by activating the AMPK/Nrf2 signaling pathway.

Methods

Rat and cell models of renal calculi were constructed by ethylene glycol (EG) and CaOx induction, respectively. The renal histopathological damage, CaOx crystal deposition, and renal function damage of rats were assessed by HE staining, Pizzolato staining, and biochemical detection of blood and urine parameters. MTT and crystal-cell adhesion assays were utilized to determine the activity of HK-2 cells and crystal adhesion ability, biochemical detection and enzyme-linked immunosorbent assay (ELISA) to measure the levels of oxidative stress-related substances and inflammatory factors, and western blot to test the expression levels of proteins related to the AMPK/Nrf2 signaling pathway.

Results

Briefly speaking, Hyp could improve the renal histopathological injury and impaired renal function, reduce the deposition of CaOx crystals in the renal tissue of rats with renal calculi, and decrease the adhesion of crystals to CaOx-treated HK-2 cells. Besides, Hyp also significantly inhibited oxidative stress response. Furthermore, Hyp was associated with the downregulation of malondialdehyde, lactate dehydrogenase, and reactive oxygen species and upregulation of superoxide dismutase activity. Additionally, Hyp treatment also suppressed inflammatory response and had a correlation with declined levels of interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor. Further exploration of mechanism manifested that Hyp might play a protective role through promoting AMPK phosphorylation and nuclear translation of Nrf2 to activate the AMPK/Nrf2 signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。