Comparison of ventral organ development across Pycnogonida (Arthropoda, Chelicerata) provides evidence for a plesiomorphic mode of late neurogenesis in sea spiders and myriapods

比较海蜘蛛纲(节肢动物、螯肢动物门)腹侧器官的发育情况,为海蜘蛛和多足类动物的晚期神经发生存在原形模式提供证据

阅读:5
作者:Georg Brenneis, Gerhard Scholtz, Barbara S Beltz

Background

Comparative studies of neuroanatomy and neurodevelopment provide valuable information for phylogenetic inference. Beyond that, they reveal transformations of neuroanatomical structures during animal evolution and modifications in the developmental processes that have shaped these structures. In the extremely diverse Arthropoda, such comparative studies contribute with ever-increasing structural resolution and taxon coverage to our understanding of nervous system evolution. However, at the neurodevelopmental level, in-depth data remain still largely confined to comparably few laboratory model organisms. Therefore, we studied postembryonic neurogenesis in six species of the bizarre Pycnogonida (sea spiders), which - as the likely sister group of all remaining chelicerates - promise to illuminate neurodevelopmental changes in the chelicerate lineage.

Conclusions

Evaluation of our findings relative to current hypotheses on pycnogonid phylogeny resolves a bipartite SEG and internal VOs as plesiomorphic conditions in pycnogonids. Although chelicerate taxa other than Pycnogonida lack comparable VOs, they are a characteristic feature of myriapod gangliogenesis. Accordingly, we propose internal VOs with neurogenic function to be part of the ground pattern of Arthropoda. Further, our findings illustrate the importance of dense sampling in old arthropod lineages - even if as gross-anatomically uniform as Pycnogonida - in order to reliably differentiate plesiomorphic from apomorphic neurodevelopmental characteristics prior to outgroup comparison.

Results

We performed in vivo cell proliferation experiments with the thymidine analogs 5-bromo-2'-deoxyuridine and 5-ethynl-2'-deoxyuridine coupled to fluorescent histochemical staining and immunolabeling, in order to compare ventral nerve cord anatomy and to localize and characterize centers of postembryonic neurogenesis. We report interspecific differences in the architecture of the subesophageal ganglion (SEG) and show the presence of segmental "ventral organs" (VOs) that act as centers of neural cell production during gangliogenesis. These VOs are either incorporated into the ganglionic soma cortex or found on the external ganglion surface. Despite this difference, several shared features support homology of the two VO types, including (1) a specific arrangement of the cells around a small central cavity, (2) the presence of asymmetrically dividing neural stem cell-like precursors, (3) the migration of newborn cells along corresponding pathways into the cortex, and (4) the same VO origin and formation earlier in development. Conclusions: Evaluation of our findings relative to current hypotheses on pycnogonid phylogeny resolves a bipartite SEG and internal VOs as plesiomorphic conditions in pycnogonids. Although chelicerate taxa other than Pycnogonida lack comparable VOs, they are a characteristic feature of myriapod gangliogenesis. Accordingly, we propose internal VOs with neurogenic function to be part of the ground pattern of Arthropoda. Further, our findings illustrate the importance of dense sampling in old arthropod lineages - even if as gross-anatomically uniform as Pycnogonida - in order to reliably differentiate plesiomorphic from apomorphic neurodevelopmental characteristics prior to outgroup comparison.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。