Protective Effect of CXCR7 Against Hypoxia/Reoxygenation Injury in Renal Tubular Epithelial Cells

CXCR7对肾小管上皮细胞缺氧/复氧损伤的保护作用

阅读:5
作者:Ping Meng, Chunli Liu, Jingchun Li, Ping Fang, Liling Chen

Abstract

Acute kidney injury (AKI) is a multifactorial syndrome with complex pathophysiology and prognosis. Ischaemia‒reperfusion injury (IRI) is a major cause of induced AKI. The aim of this study was to investigate the effect of upregulated CXCR7 expression on renal tubular epithelial cell apoptosis induced by hypoxia/reoxygenation (H/R). HK-2 cells were divided into three groups: control group (pcDNA3.1), hypoxia/reoxygenation + pcDNA3.1 group (H/R+pcDNA3.1) and CXCR7 overexpression + hypoxia/reoxygenation group (H/R+ Flag-CXCR7). Protein levels of renal tubular epithelial cell injury-, apoptosis- and autophagy-related markers were assessed by qRT‒PCR, Western blotting, flow cytometry (FCM), immunofluorescence and transmission electron microscopy (TEM). In addition, HK-2 cells were treated with the autophagy inhibitor 3-MA and divided into 3 groups: control group, 3-MA + pcDNA3.1 group, and 3-MA + Flag-CXCR7 group. Changes in autophagy and apoptosis in renal tubule epithelial cells were assessed by Western blotting and FCM. Compared with those in the control group, the protein and mRNA expression levels of CXCR7 in HK-2 cells were significantly lower under H/R conditions. Under H/R conditions, CXCR7 overexpression in HK-2 cells significantly downregulated the expression of NGAL. Moreover, CXCR7 overexpression significantly decreased H/R-induced cleaved PARP-1 and cleaved Caspase 3 levels, increased the level of the antiapoptotic protein BCL-2 and the autophagy-related molecules ATG5 and LC3B II, and significantly inhibited the expression of P62. Autophagy flow and TEM also showed that CXCR7 significantly promoted autophagy. CXCR7 significantly alleviated the 3-MA-induced inhibition of autophagy and increase in apoptosis. Upregulated CXCR7 expression can inhibit renal tubular epithelial cell apoptosis and damage by regulating autophagy. In conclusion, CXCR7 is a promising target for the prevention and/or treatment of AKI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。