Effects of in vitro exposure of perfluorooctanoic acid and monocrotophos on astroglia SVG p12 cells

全氟辛酸和久效磷体外暴露对星形胶质细胞SVG p12细胞的影响

阅读:5
作者:Odia Osemwegie, Landon Butler, Seenivasan Subbiah, Ernest Smith

Abstract

Glia cells provide supportive functions to the central nervous system and can be compromised by environmental contaminants. The primary objective of this study was to characterize the effects of in vitro exposure to perfluorooctanoic acid, a persistent environmental contaminant and/or monocrotophos (MCP), a neurotoxic organophosphate that is rapidly metabolized, to astroglia SVG p12 cells. The endpoints evaluated include cell viability, intracellular glutamate levels as a marker of astrocyte homeostasis function, differential gene expression for selected proteins, which include inflammatory markers (tachykinin), astrocytosis (nestin), S100B, and metabolism enzymes (CYP1A1). The results from cell viability revealed significant differences from the controls at some of the concentrations tested. Also, intracellular glutamate levels were elevated at the 10-μM concentration for perfluorooctanoic acid (PFOA) as well as the 10-μM PFOA/5-μM MCP concentration. Gene expression results at 80-μM PFOA concentration revealed a significant increase in the expression of S100B, tachykinin and CYP1A1. A combination of 10-μM PFOA/20-μM MCP caused a significant decrease in the expression of tachykinin. Gene expression for MCP exposures produced a decrease at the 20-μM MCP concentration. Immunofluorescence results indicated an increase in nestin protein expression for the 20-μM concentration of MCP, which contradicted the gene expression at the same concentration tested. The results indicate that toxicity to glia cells can compromise critical glia functions and could be implicated in neurodegenerative diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。