UCHL1-dependent control of hypoxia-inducible factor transcriptional activity during liver fibrosis

肝纤维化过程中 UCHL1 依赖性控制缺氧诱导因子转录活性

阅读:7
作者:Amy Collins, Rebecca Scott, Caroline L Wilson, Giuseppe Abbate, Gabrielle B Ecclestone, Adam G Albanese, Demi Biddles, Steven White, Jeremy French, John Moir, Wasfi Alrawashdeh, Colin Wilson, Sanjay Pandanaboyana, John S Hammond, Rohan Thakkar, Fiona Oakley, Jelena Mann, Derek A Mann, Niall S Kennet

Abstract

Liver fibrosis is the excessive accumulation of extracellular matrix proteins that occurs in most types of chronic liver disease. At the cellular level, liver fibrosis is associated with the activation of hepatic stellate cells (HSCs) which transdifferentiate into a myofibroblast-like phenotype that is contractile, proliferative and profibrogenic. HSC transdifferentiation induces genome-wide changes in gene expression that enable the cell to adopt its profibrogenic functions. We have previously identified that the deubiquitinase ubiquitin C-terminal hydrolase 1 (UCHL1) is highly induced following HSC activation; however, the cellular targets of its deubiquitinating activity are poorly defined. Here, we describe a role for UCHL1 in regulating the levels and activity of hypoxia-inducible factor 1 (HIF1), an oxygen-sensitive transcription factor, during HSC activation and liver fibrosis. HIF1 is elevated during HSC activation and promotes the expression of profibrotic mediator HIF target genes. Increased HIF1α expression correlated with induction of UCHL1 mRNA and protein with HSC activation. Genetic deletion or chemical inhibition of UCHL1 impaired HIF activity through reduction of HIF1α levels. Furthermore, our mechanistic studies have shown that UCHL1 elevates HIF activity through specific cleavage of degradative ubiquitin chains, elevates levels of pro-fibrotic gene expression and increases proliferation rates. As we also show that UCHL1 inhibition blunts fibrogenesis in a pre-clinical 3D human liver slice model of fibrosis, these results demonstrate how small molecule inhibitors of DUBs can exert therapeutic effects through modulation of HIF transcription factors in liver disease. Furthermore, inhibition of HIF activity using UCHL1 inhibitors may represent a therapeutic opportunity with other HIF-related pathologies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。