Human pulmonary artery smooth muscle cell dysfunction is regulated by miR-509-5p in hypoxic environment

缺氧环境下人肺动脉平滑肌细胞功能障碍受 miR-509-5p 调控

阅读:6
作者:Jingjing Wang, Rong Jiang, Yanlin Tan, Kuan Cheng

Abstract

Reportedly, dysfunction of human pulmonary arterial smooth muscle cells (PASMCs) is associated with the pathogenesis of pulmonary arterial hypertension (PAH). Herein, the role of miR-509-5p in hypoxia-induced PASMCs and the underlying mechanism were explored. PASMCs were cultured under both normoxia and hypoxia conditions. Quantitative real-time polymerase-chain reaction (qPCR) was employed for quantifying the expressions of miR-509-5p and DNMT1 mRNA in the serum of PAH patients and PASMCs. MiR-509-5p mimics and inhibitors were then, respectively, transfected into PAMSCs, and CCK-8 and Transwell assays were utilized to detect PASMCs' proliferation and migration. Flow cytometry was executed for evaluating PASMCs' apoptosis. Interrelation between miR-509-5p and DNMT1 was determined utilizing bioinformatics analysis and dual-luciferase reporter assay. Western blot assay was used to detect the expression of DNMT1 or SOD2. MiR-509-5p in serum samples of patients with PAH as well as hypoxia-induced PASMCs was significantly down-regulated, whereas DNMT1 was markedly up-regulated. MiR-509-5p mimics reduces the proliferation and migration of PASMCs, but promotes the apoptosis; conversely, miR-509-5p inhibitors exerted opposite effects. DNMT1 was identified as a target gene of miR-509-5p, and overexpression of DNMT1 reversed the biological functions of miR-509-5p in regulating the phenotypes of PAMSCs. MiR-509-5p up-regulated the expression of SOD2 by down-regulating DNMT1. MiR-509-5p regulates the proliferation, migration and apoptosis of PASMCs, and restoration of miR-509-5p may be a promising strategy to treat PAH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。