Yunpi Heluo decoction reduces ectopic deposition of lipids by regulating the SIRT1-FoxO1 autophagy pathway in diabetic rats

云脾和络汤通过调控SIRT1-FoxO1自噬通路减少糖尿病大鼠脂质异位沉积

阅读:5
作者:Zhujun Mao, Shiyu Liu, Tao Yu, Jinglan Su, Kefu Chai, Siying Weng

Conclusions

YPHL reduced EDL by regulating the SIRT1-FoxO1 autophagy pathway in diabetic rats, which could lead to future perspectives for the treatment of diabetes.

Methods

The ZDF Rats were randomized into five groups, including model, YPHL (200 mg/kg/d for 10 weeks), SIRT1-overexpression (injected with HBAAV2/9-r-SIRT1-3'-flag-GFP), NC (injected with HBAAV2/9-CMV-GFP as blank control) and control group. Pancreatic β-cells obtained from high-lipid-high-glucose fed rats were treated with YPHL (10 mg/mL) for 48 h. Lipid deposition and autophagosomes were analyzed by transmission electron microscopy. Intracellular H2O2 and ROS concentrations were measured by flow cytometry. SIRT1, FOXO1, LC3 and P62 mRNA and protein levels were analyzed using qRT-PCR and Western blots.

Objective

To examine the therapeutic effect of YPHL on ectopic lipid deposition (EDL) in Zucker diabetic fatty (ZDF) rats and the underlying mechanism. Materials and

Results

Compared with the model group, blood glucose levels in YPHL and si-SIRT1 groups were reduced by 19.3% and 27.9%, respectively. In high-lipid-high-glucose cells treated with YPHL, lipid droplets were reduced and decrease in apoptosis rate (38.6%), H2O2 (31.2%) and ROS (44.5%) levels were observed. After YPHL intervention or SIRT1 overexpression, LC3 and p62 expression increased. Protein expression of SIRT1 and LC3 in model, si-SIRT1, si-NC and si-SIRT1 + YPHL groups was lower than those in control group, while FoxO1 expression was increased. All of these protein level alterations were reversed in the si-NC + YPHL group.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。