Sequential CRISPR gene editing in human iPSCs charts the clonal evolution of myeloid leukemia and identifies early disease targets

利用 CRISPR 技术对人类诱导多能干细胞进行连续基因编辑,可以追踪髓系白血病的克隆演变过程,并识别早期疾病靶点。

阅读:2
作者:Tiansu Wang ,Allison R Pine ,Andriana G Kotini ,Han Yuan ,Lee Zamparo ,Daniel T Starczynowski ,Christina Leslie ,Eirini P Papapetrou

Abstract

Human cancers arise through the sequential acquisition of somatic mutations that create successive clonal populations. Human cancer evolution models could help illuminate this process and inform therapeutic intervention at an early disease stage, but their creation has faced significant challenges. Here, we combined induced pluripotent stem cell (iPSC) and CRISPR-Cas9 technologies to develop a model of the clonal evolution of acute myeloid leukemia (AML). Through the stepwise introduction of three driver mutations, we generated iPSC lines that, upon hematopoietic differentiation, capture distinct premalignant stages, including clonal hematopoiesis (CH) and myelodysplastic syndrome (MDS), culminating in a transplantable leukemia, and recapitulate transcriptional and chromatin accessibility signatures of primary human MDS and AML. By mapping dynamic changes in transcriptomes and chromatin landscapes, we characterize transcriptional programs driving specific transitions between disease stages. We identify cell-autonomous dysregulation of inflammatory signaling as an early and persistent event in leukemogenesis and a promising early therapeutic target.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。