Dexmedetomidine Protects SK-N-SH Nerve Cells from Oxidative Injury by Maintaining Iron Homeostasis

右美托咪啶通过维持铁稳态保护 SK-N-SH 神经细胞免受氧化损伤

阅读:4
作者:Lingqin Qiu, Li Ge, Qionghua Hu

Abstract

Ferroptosis is characterized by the accumulation of iron-derived reactive oxygen species (ROS). Ferroptosis causes neuronal death in multiple neurological disorders. Dexmedetomidine (Dex), an extensively used anesthetic, has neuroprotective effects against ROS, but its effect on iron metabolism remains unknown. In this study, SK-N-SH cells were treated with Dex for 24 h before treatment with 100 µM tert-butyl hydroperoxide (t-BHP; an ROS inducer) for 1 h. Afterward, intracellular ROS and labile ferrous iron [Fe(II)] levels were assessed. Dex hindered the increase in cellular ROS and labile Fe(II) levels caused by t-BHP, although Dex alone had no effect on labile Fe(II) level. t-BHP increased the expression of iron importers, transferrin receptor-1 and divalent metal transporter-1, and iron regulatory protein 1 and 2. These effects were abrogated by Dex treatment and SP-1 knockdown. t-BHP increased the phosphorylation of c-Jun N-terminal kinase (JNK) and signal transducer and activator of transcription 4 (STAT4), the primary up-stream activators of SP-1, but Dex decreased this. This study, for the first time, revealed that the antioxidative effect of Dex is partly associated to the inhibition of intracellular iron accumulation induced by t-BHP. Dex regulates iron metabolism by regulating iron importers and exporters through JNK/Sp1 and Stat4/Sp1 signaling. It is worth investigating whether Dex can protect neurons from ferroptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。