An optimized antibody-single-chain TRAIL fusion protein for cancer therapy

一种用于癌症治疗的优化抗体-单链 TRAIL 融合蛋白

阅读:9
作者:Martin Siegemund, Oliver Seifert, Maria Zarani, Tamara Džinić, Valentino De Leo, Doris Göttsch, Sabine Münkel, Meike Hutt, Klaus Pfizenmaier, Roland E Kontermann

Abstract

Fusion proteins combining oligomeric assemblies of a genetically obtained single-chain (sc) variant of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) with antibodies directed against tumor-associated antigens represent a promising strategy to overcome the limited therapeutic activity of conventional soluble TRAIL. To further improve the scTRAIL module in order to obtain a robust, thermostable molecule of high activity, we performed a comprehensive analysis of the minimal TNF homology domain (THD) and optimized linkers between the 3 TRAIL subunits constituting a scTRAIL. Through a stepwise mutagenesis of the N- and C-terminal region and the joining linker sequences, we generated bioactive scTRAIL molecules comprising a covalent linkage of the C-terminal Val280 and the N-terminal position 122 by only 2 amino acid residues in combination with conservative exchanges at positions 122 and 279. The increased thermal stability and solubility of such optimized scTRAIL molecules translated into increased bioactivity in the diabody-scTRAIL (Db-scTRAIL) format, exemplified here for an epidermal growth factor receptor-specific Db-scTRAIL. Additional modifications within the diabody linkers resulted in a fusion protein exerting high, target-dependent apoptosis induction in tumor cell lines in vitro and potent antitumor activity in vivo. Our results illustrate that protein engineering of scTRAIL and associated peptide linkers provides a promising strategy to develop antibody-scTRAIL fusion proteins as effective antitumor therapeutics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。