Histone H3 methyltransferase Ezh2 promotes white adipocytes but inhibits brown and beige adipocyte differentiation in mice

组蛋白 H3 甲基转移酶 Ezh2 促进小鼠白色脂肪细胞分化,但抑制棕色和米色脂肪细胞分化

阅读:7
作者:Xiaohui Wu, Jianqiang Li, Kaixuan Chang, Fan Yang, Zhen Jia, Cheng Sun, Qing Li, Yuqiao Xu

Abstract

Obesity is a disease characterized by imbalance between energy intake and expenditure, excessive energy store in white adipocytes, but brown and beige adipocytes consume energy to relieve obesity. In this study, we want to explore the role of the histone H3 methyltransferase Ezh2 in the differentiation of white, brown and beige adipocytes with Ezh2 conditional knockout mice (Ezh2flox/floxPrx1-cre) and mouse embryonic fibroblasts (MEFs). The results showed that Ezh2-deficient mice have a leaner phenotype and less white adipose tissues. The morphological changes in the adipose tissue included smaller white adipose tissue depots, white adipocytes with smaller diameter, smaller lipid droplets inside the brown adipocytes and more beige adipocytes in the Ezh2-deficient mice compared with the control. The differentiation markers of white adipocytes in Ezh2 knockout mice decreased; Ucp1 and other browning markers increased in brown and beige adipocytes. The Ezh2 knockout mice could better tolerate cold stimulation, and they can also resist obesity and insulin resistance induced by a high-fat diet. The Ezh2 inhibitor GSK126 could inhibit the differentiation of MEFs into white adipocytes but promote their differentiation into brown/beige adipocytes. The H3K27me3 demethylase Jmjd3/UTX inhibitor GSKJ4 inhibited MEFs' differentiation into brown/beige adipocytes. These results showed that Ezh2 promotes the differentiation of white adipocytes and inhibits the differentiation of brown and beige adipocytes in vivo and in vitro through its methylase activity and this may represent new knowledge for obesity therapeutic strategy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。