Modeling Alzheimer's disease in primary neurons reveals DNA damage response coupled with MAPK-DLK signaling in wild-type tau-induced neurodegeneration

在原代神经元中模拟阿尔茨海默病,揭示了野生型 tau 诱发的神经变性中 DNA 损伤反应与 MAPK-DLK 信号传导相结合

阅读:7
作者:Sanming Li, Ethan R Roy, Yanyu Wang, Trent Watkins, Wei Cao

Background

Alzheimer's disease (AD) is the most prevalent form of neurodegeneration. Despite the well-established link between tau aggregation and clinical progression, the major pathways driven by this protein to intrinsically damage neurons are incompletely understood.

Conclusions

We have established a cellular tauopathy model highly relevant to AD and identified a functional synergy between DNA damage response and the MAPK-DLK axis in the neuronal degenerative process.

Methods

To model AD-relevant neurodegeneration driven by tau, we overexpressed wild-type human tau in primary mouse neurons and characterized the subsequent cellular and molecular changes. RNAseq profiling and functional investigation were performed as well. A direct comparison with a mutant human tau was conducted in detail.

Results

We observed substantial axonal degeneration and cell death associated with wild-type tau, a process accompanied by activated caspase 3. Mechanistically, we detected deformation of the nuclear envelope and increased DNA damage response in tau-expressing neurons. Gene profiling analysis further revealed significant alterations in the mitogen-activated protein kinase (MAPK) pathway; moreover, inhibitors of dual leucine zipper kinase (DLK) and c-Jun N-terminal kinase (JNK) were effective in alleviating wild-type human tau-induced neurodegeneration. In contrast, mutant P301L human tau was less toxic to neurons, despite causing comparable DNA damage. Axonal DLK activation induced by wild-type tau potentiated the impact of DNA damage response, resulting in overt neurotoxicity. Conclusions: We have established a cellular tauopathy model highly relevant to AD and identified a functional synergy between DNA damage response and the MAPK-DLK axis in the neuronal degenerative process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。