A multiscale functional map of somatic mutations in cancer integrating protein structure and network topology

整合蛋白质结构和网络拓扑的癌症体细胞突变多尺度功能图

阅读:6
作者:Yingying Zhang, Alden K Leung, Jin Joo Kang, Yu Sun, Guanxi Wu, Le Li, Jiayang Sun, Lily Cheng, Tian Qiu, Junke Zhang, Shayne Wierbowski, Shagun Gupta, James Booth, Haiyuan Yu

Abstract

A major goal of cancer biology is to understand the mechanisms underlying tumorigenesis driven by somatically acquired mutations. Two distinct types of computational methodologies have emerged: one focuses on analyzing clustering of mutations within protein sequences and 3D structures, while the other characterizes mutations by leveraging the topology of protein-protein interaction network. Their insights are largely non-overlapping, offering complementary strengths. Here, we established a unified, end-to-end 3D structurally-informed protein interaction network propagation framework, NetFlow3D, that systematically maps the multiscale mechanistic effects of somatic mutations in cancer. The establishment of NetFlow3D hinges upon the Human Protein Structurome, a comprehensive repository we compiled that incorporates the 3D structures of every single protein as well as the binding interfaces of all known protein interactions in humans. NetFlow3D leverages the Structurome to integrate information across atomic, residue, protein and network levels: It conducts 3D clustering of mutations across atomic and residue levels on protein structures to identify potential driver mutations. It then anisotropically propagates their impacts across the protein interaction network, with propagation guided by the specific 3D structural interfaces involved, to identify significantly interconnected network "modules", thereby uncovering key biological processes underlying disease etiology. Applied to 1,038,899 somatic protein-altering mutations in 9,946 TCGA tumors across 33 cancer types, NetFlow3D identified 1,4444 significant 3D clusters throughout the Human Protein Structurome, of which ~55% would not have been found if using only experimentally-determined structures. It then identified 26 significantly interconnected modules that encompass ~8-fold more proteins than applying standard network analyses. NetFlow3D and our pan-cancer results can be accessed from http://netflow3d.yulab.org.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。