Right Ventricular Sarcomere Contractile Depression and the Role of Thick Filament Activation in Human Heart Failure with Pulmonary Hypertension

右心室肌节收缩抑制和粗丝激活在肺动脉高压患者心力衰竭中的作用

阅读:5
作者:Vivek Jani, M Imran Aslam, Axel J Fenwick, Weikang Ma, Henry Gong, Gregory Milburn, Devin Nissen, Ilton Cubero Salazar, Olivia Hanselman, Monica Mukherjee, Marc K Halushka, Kenneth B Margulies, Kenneth Campbell, Thomas C Irving, David A Kass, Steven Hsu

Conclusions

While there are multiple RV myocyte contractile deficits In HFrEF-PH, clinical indices primarily detect reduced isometric calcium-stimulated force related to deficits in basal and recruitable %DRX myosin. Our results support use of therapies to increase %DRX and enhance length-dependent recruitment of DRX myosin heads in such patients.

Objective

To determine components of myocyte contractile depression in HFrEF-PH, identify those reflected by clinical RV indices, and elucidate their underlying biophysical mechanisms.

Results

Resting, calcium- and load-dependent mechanics were measured in permeabilized RV cardiomyocytes isolated from explanted hearts from 23 HFrEF-PH patients undergoing cardiac transplantation and 9 organ-donor controls. Unsupervised machine learning using myocyte mechanical data with the highest variance yielded two HFrEF-PH subgroups that in turn mapped to patients with depressed (RVd) or compensated (RVc) clinical RV function. This correspondence was driven by reduced calcium-activated isometric tension in RVd, while surprisingly, many other major myocyte contractile measures including peak power, maximum unloaded shortening velocity, and myocyte active stiffness were similarly depressed in both groups. Similar results were obtained when subgroups were first defined by clinical indices, and then myocyte mechanical properties in each group compared. To test the role of thick-filament defects, myofibrillar structure was assessed by X-ray diffraction of muscle fibers. This revealed more myosin heads associated with the thick filament backbone in RVd but not RVc, as compared to controls. This corresponded to reduced myosin ATP turnover in RVd myocytes, indicating less myosin in a cross-bridge ready disordered-relaxed (DRX) state. Altering DRX proportion (%DRX) affected peak calcium-activated tension in the patient groups differently, depending on their basal %DRX, highlighting potential roles for precision-guided therapeutics. Lastly, increasing myocyte preload (sarcomere length) increased %DRX 1.5-fold in controls but only 1.2-fold in both HFrEF-PH groups, revealing a novel mechanism for reduced myocyte active stiffness and by extension Frank-Starling reserve in human HF. Conclusions: While there are multiple RV myocyte contractile deficits In HFrEF-PH, clinical indices primarily detect reduced isometric calcium-stimulated force related to deficits in basal and recruitable %DRX myosin. Our results support use of therapies to increase %DRX and enhance length-dependent recruitment of DRX myosin heads in such patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。