Mitochondrial fusion promoter restores mitochondrial dynamics balance and ameliorates diabetic cardiomyopathy in an optic atrophy 1-dependent way

线粒体融合启动子以视神经萎缩 1 依赖的方式恢复线粒体动力学平衡并改善糖尿病性心肌病

阅读:7
作者:Mingge Ding, Chaoyang Liu, Rui Shi, Mingzhe Yu, Ke Zeng, Junjun Kang, Feng Fu, Mantian Mi

Aim

Imbalanced mitochondrial dynamics including suppressed mitochondrial fusion has been observed in diabetic hearts. However, it is still unknown whether mitochondrial fusion promoter is an effective protection to diabetic hearts. This study was designed to explore the efficacy of mitochondrial fusion promoter on diabetic cardiomyopathy (DCM).

Conclusion

Our findings show for the first time that mitochondrial fusion promoter M1 effectively balances mitochondrial dynamics and protects against diabetic cardiomyopathy (DCM) via an Opa1-dependent way, suggesting that promoting mitochondrial fusion might be a potential therapeutic strategy for DCM.

Methods

Male Sprague-Dawley rats were injected with streptozotocin (STZ, 65 mg/kg/d) intraperitoneally to induce diabetes. Seven weeks after vehicle or STZ injection, control or diabetic rats were treated with the vehicle or a mitochondrial fusion promoter-M1 (2 mg/kg/d) intraperitoneally for 6 weeks. Moreover, M1 was administrated to the primary cardiomyocytes cultured in normal glucose medium (NG, 5.5 mmol/L) or high glucose (HG, 33 mnol/L).

Results

Administration of M1 significantly promoted mitochondrial fusion and attenuated the reduction in optic atrophy 1 (Opa1) expression in diabetic hearts. Importantly, M1 treatment attenuated oxidative stress, improved mitochondrial function and alleviated DCM in diabetic rats. In HG-treated cardiomyocytes, M1 treatment consistently increased the expression of Opa1, promoted mitochondrial fusion, enhanced mitochondrial respiratory capacity and reduced mitochondria-derived superoxide production, all of which were blunted by Opa1 siRNA knockdown. In addition, selective upregulation of Opa1 alone can also promote mitochondrial fusion, improve mitochondrial function and inhibit mitochondria-derived superoxide production in HG-cultured cardiomyocytes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。