Quantitative phase and polarization imaging through an optical fiber applied to detection of early esophageal tumorigenesis

光纤定量相位和偏振成像在食管早期肿瘤发生检测中的应用

阅读:7
作者:George S D Gordon, James Joseph, Maria P Alcolea, Travis Sawyer, Calum Williams, Catherine R M Fitzpatrick, Philip H Jones, Massimiliano di Pietro, Rebecca C Fitzgerald, Timothy D Wilkinson, Sarah E Bohndiek

Abstract

Phase and polarization of coherent light are highly perturbed by interaction with microstructural changes in premalignant tissue, holding promise for label-free detection of early tumors in endoscopically accessible tissues such as the gastrointestinal tract. Flexible optical multicore fiber (MCF) bundles used in conventional diagnostic endoscopy and endomicroscopy scramble phase and polarization, restricting clinicians instead to low-contrast amplitude-only imaging. We apply a transmission matrix characterization approach to produce full-field en-face images of amplitude, quantitative phase, and resolved polarimetric properties through an MCF. We first demonstrate imaging and quantification of biologically relevant amounts of optical scattering and birefringence in tissue-mimicking phantoms. We present an entropy metric that enables imaging of phase heterogeneity, indicative of disordered tissue microstructure associated with early tumors. Finally, we demonstrate that the spatial distribution of phase and polarization information enables label-free visualization of early tumors in esophageal mouse tissues, which are not identifiable using conventional amplitude-only information.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。