Effect of atorvastatin on pulmonary arterial hypertension in rats through PI3K/AKT signaling pathway

阿托伐他汀通过PI3K/AKT信号通路对大鼠肺动脉高压的影响

阅读:7
作者:Y-Y Wang, X-D Cheng, H Jiang

Conclusions

Atorvastatin regulates the symptoms of PAH in rats through activating the PI3K/AKT signaling pathway.

Methods

The model of PAH was successfully established in rats via hypoxia feeding. All rats were divided into three groups, including Control group (n=15), PAH model group (Model group, n=15) and atorvastatin treatment group (Ator group, n=15). Tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and nitric oxide (NO) were detected via enzyme-linked immunosorbent assay (ELISA). Right ventricular systolic pressure (RVSP) and right ventricular hypertrophy index (RVHI) in each group were determined as well. Meanwhile, the pathological changes in lung tissues of rats were detected via hematoxylin-eosin (HE) staining. Furthermore, the apoptosis level of lung tissues in each group was detected via terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining. In addition, the expression levels of PI3K/AKT signaling pathway and apoptotic genes in lung tissues were detected via quantitative Polymerase Chain Reaction (qPCR).

Objective

The aim of this study was to investigate the effect of atorvastatin on pulmonary arterial hypertension (PAH) in rats and to observe its specific regulatory mechanism through the phosphatidylinositol 3-hydroxy kinase/protein kinase B (PI3K/AKT) signaling pathway. Materials and

Results

In Model group, the levels of TNF-α and IL-6 increased significantly, while the level of NO decreased. Both RVSP and RVHI in Model group were significantly higher than those of Control group and Ator group (p<0.05). The results of HE staining revealed that Model group showed significantly severe lung tissue injury (p<0.05). According to the results of TUNEL staining, the number of apoptotic cells in lung tissues in Model group was significantly smaller than that of Ator group (p<0.05). Meanwhile, the expression level of cysteinyl aspartate-specific proteinase-3 (Caspase-3) in Model group was markedly lower than that of Ator group (p<0.05). However, the expression level of B-cell lymphoma-2 (Bcl-2) in Model group was markedly higher than that of Ator group (p<0.05). In Ator group, the expression levels of PI3K and AKT in lung tissues were remarkably higher than those of Model group (p<0.05). All the above results indicated that atorvastatin could effectively up-regulate the expressions of PI3K and AKT (p<0.05). Conclusions: Atorvastatin regulates the symptoms of PAH in rats through activating the PI3K/AKT signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。