Visualization of the three-dimensional structure of the human centromere in mitotic chromosomes by superresolution microscopy

利用超分辨率显微镜可视化有丝分裂染色体中人类着丝粒的三维结构

阅读:6
作者:Elena Di Tommaso, Valeria de Turris, Pavan Choppakatla, Hironori Funabiki, Simona Giunta

Abstract

The human centromere comprises large arrays of repetitive α-satellite DNA at the primary constriction of mitotic chromosomes. In addition, centromeres are epigenetically specified by the centromere-specific histone H3 variant CENP-A that supports kinetochore assembly to enable chromosome segregation. Because CENP-A is bound to only a fraction of the α-satellite elements within the megabase-sized centromere DNA, correlating the three-dimensional (3D) organization of α-satellite DNA and CENP-A remains elusive. To visualize centromere organization within a single chromatid, we used a combination of the centromere chromosome orientation fluorescence in situ hybridization (Cen-CO-FISH) technique together with structured illumination microscopy. Cen-CO-FISH allows the differential labeling of the sister chromatids without the denaturation step used in conventional FISH that may affect DNA structure. Our data indicate that α-satellite DNA is arranged in a ring-like organization within prometaphase chromosomes, in the presence or absence of spindle's microtubules. Using expansion microscopy, we found that CENP-A organization within mitotic chromosomes follows a rounded pattern similar to that of α-satellite DNA, often visible as a ring thicker at the outer surface oriented toward the kinetochore-microtubule interface. Collectively, our data provide a 3D reconstruction of α-satellite DNA along with CENP-A clusters that outlines the overall architecture of the mitotic centromere.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。