IGF2BP2-Shox2 axis regulates hippocampal-neuronal senescence to alleviate microgravity-induced recognition disturbance

IGF2BP2-Shox2 轴调节海马神经元衰老以减轻微重力引起的识别障碍

阅读:6
作者:Yujie Zhao, Guohua Ji, Sihai Zhou, Shiou Cai, Kai Li, Wanyu Zhang, Chuanjie Zhang, Na Yan, Shuhui Zhang, Xiaopeng Li, Bo Song, Lina Qu

Abstract

During space travel, microgravity leads to disturbances in cognitive function, while the underlying mechanism is still unclear. Simulated microgravity mice showed neuronal age-like changes in the hippocampus of our study. In the context of microgravity, we discovered m6A modification reshapes in the hippocampal region. When paired with RNA-seq and MeRIP-seq, Shox2 was found to be a powerful regulator in hippocampal neuron that respondes to microgravity. Decreased expression of senescence-associated secretory phenotype factors and improved genes related to synapses led to the restoration of memory function in the hippocampus upon increased expression of Shox2. Moreover, we discovered that IGF2BP2 was required for the m6A modification of the Shox2, and overexpressed IGF2BP2 in the hippocampus protected against both neuronal senescence and learning and memory decline caused by loss of gravity. Accordingly, our research identified the hippocampal IGF2BP2-Shox2 axis as a possible therapeutic approach to maintaining cognitive function during space travel.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。