Single-cell transcriptomic-informed deconvolution of bulk data identifies immune checkpoint blockade resistance in urothelial cancer

基于单细胞转录组学的大量数据反卷积可识别尿路上皮癌的免疫检查点阻断耐药性

阅读:10
作者:Li Wang, Sudeh Izadmehr, John P Sfakianos, Michelle Tran, Kristin G Beaumont, Rachel Brody, Carlos Cordon-Cardo, Amir Horowitz, Robert Sebra, William K Oh, Nina Bhardwaj, Matthew D Galsky, Jun Zhu

Abstract

Interactions within the tumor microenvironment (TME) significantly influence tumor progression and treatment responses. While single-cell RNA sequencing (scRNA-seq) and spatial genomics facilitate TME exploration, many clinical cohorts are assessed at the bulk tissue level. Integrating scRNA-seq and bulk tissue RNA-seq data through computational deconvolution is essential for obtaining clinically relevant insights. Our method, ProM, enables the examination of major and minor cell types. Through evaluation against existing methods using paired single-cell and bulk RNA sequencing of human urothelial cancer (UC) samples, ProM demonstrates superiority. Application to UC cohorts treated with immune checkpoint inhibitors reveals pre-treatment cellular features associated with poor outcomes, such as elevated SPP1 expression in macrophage/monocytes (MM). Our deconvolution method and paired single-cell and bulk tissue RNA-seq dataset contribute novel insights into TME heterogeneity and resistance to immune checkpoint blockade.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。