Superoxide dismutase-loaded porous polymersomes as highly efficient antioxidant nanoparticles targeting synovium for osteoarthritis therapy

载有超氧化物歧化酶的多孔聚合物囊泡作为高效抗氧化纳米粒子靶向滑膜用于骨关节炎治疗

阅读:8
作者:Tao Gui, Lijun Luo, Bonirath Chhay, Leilei Zhong, Yulong Wei, Lutian Yao, Wei Yu, Jun Li, Charles L Nelson, Andrew Tsourkas, Ling Qin, Zhiliang Cheng

Abstract

Oxidative stress and the reactive oxygen species (ROS) have important roles in osteoarthritis (OA) development and progression. Scavenging ROS by exogenous antioxidant enzymes could be a promising approach for OA treatment. However, the direct use of antioxidant enzymes, such as superoxide dismutase (SOD), is challenging due to a lack of effective drug delivery system to knee joints. This study utilized a highly efficient antioxidative nanoparticle based on SOD-loaded porous polymersome nanoparticles (SOD-NPs) for delivery of SOD to mouse knee joints. The resultant SOD-NPs had prolonged mouse joint retention time with predominant accumulation in synovium but not in articular cartilage. Examining human synovial explants revealed that SOD-NPs minimize oxidative damages induced by OA-like insults. Intra-articular injections of SOD-NPs in mice receiving OA surgery were effective in attenuating OA initiation and preventing its further progression. Mechanistically, SOD-NPs reduced ROS production and the synthesis of catabolic proteases in both articular cartilage and synovium. Hence, our work demonstrates the therapeutic potential of SOD-NPs and indicate that targeting synovium holds a great promise for OA therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。