Trichostatin A-Assisted Epigenomic Modulation Affects the Expression Profiles of Not Only Recombinant Human α1,2-Fucosyltransferase and α-Galactosidase A Enzymes But Also Galα1→3Gal Epitopes in Porcine Bi-Transgenic Adult Cutaneous Fibroblast Cells

曲古霉素 A 辅助表观基因组调节不仅影响重组人 α1,2-岩藻糖基转移酶和 α-半乳糖苷酶 A 酶的表达谱,还影响猪双转基因成年皮肤成纤维细胞中的 Galα1→3Gal 表位

阅读:6
作者:Jerzy Wiater, Marcin Samiec, Maria Skrzyszowska, Daniel Lipiński

Abstract

This study was conducted to explore whether trichostatin A-assisted epigenomic modulation (TSA-EM) can affect the expression of not only recombinant human α1,2-fucosyltransferase (rhα1,2-FT) and α-galactosidase A (rhα-Gal A) immune system enzymes but also Galα1→3Gal epitopes in ex vivo proliferating adult cutaneous fibroblast cells (ACFCs) derived from hFUT2×hGLA bi-transgenic pigs that had been produced for the needs of future xenotransplantation efforts. The ACFC lines were treated with 50 nM TSA for 24 h and then the expression profiles of rhα1,2-FT and rhα-Gal A enzymes were analyzed by Western blot and immunofluorescence. The expression profiles of the Galα1→3Gal epitope were determined by lectin blotting and lectin fluorescence. The ACFCs derived from non-transgenic (nTG) pigs were served as the negative (TSA-) and positive (TSA+) control groups. For both hFUT2×hGLA and nTG samples, the expression levels of α1,2-FT and α-Gal A proteins in TSA+ cells were more than twofold higher in comparison to TSA- cells. Moreover, a much lower expression of the Galα1→3Gal epitopes was shown in TSA- hFUT2×hGLA cells as compared to the TSA- nTG group. Interestingly, the levels of Galα1→3Gal expression in TSA-treated hFUT2×hGLA and nTG ACFCs were significantly higher than those noticed for their TSA-untreated counterparts. Summing up, ex vivo protection of effectively selected bi-transgenic ACFC lines, in which TSA-dependent epigenetic transformation triggered the enhancements in reprogrammability and subsequent expression of hFUT2 and hGLA transgenes and their corresponding transcripts, allows for cryopreservation of nuclear donor cells, nuclear-transferred female gametes, and resultant porcine cloned embryos. The latter can be used as a cryogenically conserved genetic resource of biological materials suitable for generation of bi-transgenic cloned offspring in pigs that is targeted at biomedical research in the field of cell/tissue xenotransplantation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。