Quantitative proteomic analysis revealed N'-nitrosonornicotine-induced down-regulation of nonmuscle myosin II and reduced cell migration in cultured human skin fibroblast cells

定量蛋白质组学分析显示,N'-亚硝基去甲烟碱诱导非肌肉肌球蛋白 II 下调,并降低培养的人类皮肤成纤维细胞中的细胞迁移

阅读:7
作者:John M Prins, Yinsheng Wang

Abstract

The association of tobacco smoke with decreased cell motility and wound healing is well documented; however, the cellular mechanisms and specific toxic tobacco constituents responsible for this effect are not well understood. Tobacco-specific N-nitrosamines (TSNAs) are among the most important classes of carcinogens found in tobacco products. The TSNA N'-nitrosonornicotine (NNN) is present at relatively high levels in tobacco and its smoke, as well as second- and third-hand smoke. To investigate the cellular pathways that are perturbed upon NNN exposure, we employed a quantitative proteomic approach, utilizing stable isotope labeling by amino acids in cell culture and mass spectrometry, to assess the NNN-induced alteration of protein expression in GM00637 human skin fibroblast cells. With this approach, we were able to quantify 2599 proteins, 191 of which displayed significantly changed expression following NNN exposure. One of the main findings from our proteomic analysis was the down-regulation of six different subunits of myosin, particularly nonmuscle myosin II heavy chain, isoforms A, B, and C. In addition, we found the altered expression of several extracellular matrix proteins and proteins involved in cellular adhesion. Together, our quantitative proteomic results suggested that NNN exposure may interfere with fibroblast motility. An in vitro scratch wound assay result supported that NNN exposure reduced the ability of dermal fibroblast to migrate into the scratched area. The results from the present study offer novel insights into the cellular mechanisms of NNN toxicity and identify NNN as a specific tobacco constituent that contributes to decreased fibroblast migration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。