Tentonin 3 is a pore-forming subunit of a slow inactivation mechanosensitive channel

Tentonin 3 是缓慢失活的机械敏感通道的成孔亚基

阅读:4
作者:Sungmin Pak, Hyunil Ryu, Sujin Lim, Thien-Luan Nguyen, Sungwook Yang, Sumin Kang, Yeon Gyu Yu, Junhyuk Woo, Chanjin Kim, Cristina Fenollar-Ferrer, John N Wood, Mi-Ock Lee, Gyu-Sang Hong, Kyungreem Han, Tae Song Kim, Uhtaek Oh

Abstract

Mechanically activating (MA) channels transduce numerous physiological functions. Tentonin 3/TMEM150C (TTN3) confers MA currents with slow inactivation kinetics in somato- and barosensory neurons. However, questions were raised about its role as a Piezo1 regulator and its potential as a channel pore. Here, we demonstrate that purified TTN3 proteins incorporated into the lipid bilayer displayed spontaneous and pressure-sensitive channel currents. These MA currents were conserved across vertebrates and differ from Piezo1 in activation threshold and pharmacological response. Deep neural network structure prediction programs coupled with mutagenetic analysis predicted a rectangular-shaped, tetrameric structure with six transmembrane helices and a pore at the inter-subunit center. The putative pore aligned with two helices of each subunit and had constriction sites whose mutations changed the MA currents. These findings suggest that TTN3 is a pore-forming subunit of a distinct slow inactivation MA channel, potentially possessing a tetrameric structure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。