Ddhd1 knockout mouse as a model of locomotive and physiological abnormality in familial spastic paraplegia

Ddhd1 基因敲除小鼠作为家族性痉挛性截瘫运动和生理异常的模型

阅读:7
作者:Takuya Morikawa, Hiroaki Ohishi, Kengo Kosaka, Tomofumi Shimojo, Akihiro Nagano, Itsuki Taniguchi, Ryuta Fujioka, Kosei Moriyama, Motoko Unoki, Masatomo Takahashi, Motonao Nakao, Yoshihiro Izumi, Takeshi Bamba, Hiroyuki Sasaki, Shiroh Miura, Hiroki Shibata

Abstract

We have previously reported a novel homozygous 4-bp deletion in DDHD1 as the responsible variant for spastic paraplegia type 28 (SPG28; OMIM#609340). The variant causes a frameshift, resulting in a functionally null allele in the patient. DDHD1 encodes phospholipase A1 (PLA1) catalyzing phosphatidylinositol to lysophosphatidylinositol (LPI). To clarify the pathogenic mechanism of SPG28, we established Ddhd1 knockout mice (Ddhd1[-/-]) carrying a 5-bp deletion in Ddhd1, resulting in a premature termination of translation at a position similar to that of the patient. We observed a significant decrease in foot-base angle (FBA) in aged Ddhd1(-/-) (24 months of age) and a significant decrease in LPI 20:4 (sn-2) in Ddhd1(-/-) cerebra (26 months of age). These changes in FBA were not observed in 14 months of age. We also observed significant changes of expression levels of 22 genes in the Ddhd1(-/-) cerebra (26 months of age). Gene Ontology (GO) terms relating to the nervous system and cell-cell communications were significantly enriched. We conclude that the reduced signaling of LPI 20:4 (sn-2) by PLA1 dysfunction is responsible for the locomotive abnormality in SPG28, further suggesting that the reduction of downstream signaling such as GPR55 which is agonized by LPI is involved in the pathogenesis of SPG28.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。