LRRK2 Inhibition Mitigates the Neuroinflammation Caused by TLR2-Specific α-Synuclein and Alleviates Neuroinflammation-Derived Dopaminergic Neuronal Loss

LRRK2 抑制可减轻 TLR2 特异性 α-突触核蛋白引起的神经炎症并减轻神经炎症引起的多巴胺能神经元丢失

阅读:5
作者:Dong-Hwan Ho, Daleum Nam, Mikyoung Seo, Sung-Woo Park, Wongi Seol, Ilhong Son

Abstract

Evidence suggests that crosstalk occurs between microglial leucine-rich repeat kinase 2 (LRRK2)-a regulator of neuroinflammation-and neuron-released α-synuclein (αSyn)-a promoter of microglial activation and neuroinflammatory responses-in neuroinflammation-mediated Parkinson's disease (PD) progression. Therefore, we examined whether LRRK2 inhibition reduces the responses of microglia to neuroinflammation caused by neuron-released αSyn. We examined the neuroinflammatory responses provoked by Toll-like receptor 2 (TLR2)-positive αSyn of neuronal cells using an LRRK2 inhibitor in the mouse glioma cells, rat primary microglia, and human microglia cell line; and the effects of LRRK2 inhibitor in the co-culture of ectopic αSyn-expressing human neuroblastoma cells and human microglia cells and in mouse models by injecting αSyn. We analyzed the association between LRRK2 activity and αSyn oligomer and TLR2 levels in the substantia nigra tissues of human patients with idiopathic PD (iPD). The TLR2-specific αSyn elevated LRRK2 activity and neuroinflammation, and the LRRK2 inhibitor ameliorated neuroinflammatory responses in various microglia cells, alleviated neuronal degeneration along with neuroinflammation in the co-culture, and blocked the further progression of locomotor failure and dopaminergic neuronal degeneration caused by TLR2-specific αSyn in mice. Furthermore, LRRK2 phosphorylation was increased in patients with iPD showing αSyn-specific high TLR2 level. These results suggest the application of LRRK2 inhibitors as a novel therapeutic approach against αSyn-mediated PD progression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。