Differential combination immunotherapy requirements for inflamed (warm) tumors versus T cell excluded (cool) tumors: engage, expand, enable, and evolve

发炎(温热)肿瘤与 T 细胞排斥(冷热)肿瘤的差异化联合免疫治疗要求:参与、扩展、实现和发展

阅读:6
作者:Kellsye P Fabian, Michelle R Padget, Rika Fujii, Jeffrey Schlom, James W Hodge

Background

Different types of tumors have varying susceptibility to immunotherapy and hence require different treatment strategies; these cover a spectrum ranging from 'hot' tumors or those with high mutational burden and immune infiltrates that are more amenable to targeting to 'cold' tumors that are more difficult to treat due to the fewer targetable mutations and checkpoint markers. We hypothesized that an effective anti-tumor response requires multiple agents that would (1) engage the immune response and generate tumor-specific effector cells; (2) expand the number and breadth of the immune effector cells; (3) enable the anti-tumor activity of these immune cells in the tumor microenvironment; and (4) evolve the tumor response to widen immune effector repertoire.

Conclusion

The hexatherapy regimen is a strategic combination of immuno-oncology agents that can engage, expand, enable, and evolve the immune response and can provide therapeutic benefits in both MC38-CEA (warm) and 4T1 (cool) tumor models.

Methods

A hexatherapy combination was designed and administered to MC38-CEA (warm) and 4T1 (cool) murine tumor models. The hexatherapy regimen was composed of adenovirus-based vaccine and IL-15 (interleukin-15) superagonist (N-803) to engage the immune response; anti-OX40 and anti-4-1BB to expand effector cells; anti-PD-L1 (anti-programmed death-ligand 1) to enable anti-tumor activity; and docetaxel to promote antigen spread. Primary and metastatic tumor growth inhibition were measured. The generation of anti-tumor immune effector cells was analyzed using flow cytometry, ELISpot (enzyme-linked immunospot), and RNA analysis.

Results

The MC38-CEA and 4T1 tumor models have differential sensitivities to the combination treatments. In the 'warm' MC38-CEA, combinations with two to five agents resulted in moderate therapeutic benefit while the hexatherapy regimen outperformed all these combinations. On the other hand, the hexatherapy regimen was required in order to decrease the primary and metastatic tumor burden in the 'cool' 4T1 model. In both models, the hexatherapy regimen promoted CD4+ and CD8+ T cell proliferation and activity. Furthermore, the hexatherapy regimen induced vaccine-specific T cells and stimulated antigen cascade. The hexatherapy regimen also limited the immunosuppressive T cell and myeloid derived suppressor cell populations, and also decreased the expression of exhaustion markers in T cells in the 4T1 model.

Trial registration

ClinicalTrials.gov NCT03493945.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。