Protective effects of cilengitide on inflammation in chondrocytes under excessive mechanical stress

西仑吉肽对过度机械应力下软骨细胞炎症的保护作用

阅读:5
作者:Naoto Hirose, Yuki Okamoto, Makoto Yanoshita, Yuki Asakawa, Chikako Sumi, Mami Takano, Sayuri Nishiyama, Shao-Ching Su, Tomomi Mitsuyoshi, Ryo Kunimatsu, Kazuo Tanne, Kotaro Tanimoto

Abstract

Chondrocytes constantly receive external stimuli, which regulates remodeling. An optimal level of mechanical stress is essential for maintaining chondrocyte homeostasis, however, excessive mechanical stress induces inflammatory cytokines and protease, such as matrix metalloproteinases (MMPs). Therefore, excessive mechanical stress is considered to be one of the main causes to cartilage destruction leading to osteoarthritis (OA). Integrins are well-known as cell adhesion molecules and act as receptors for extracellular matrix (ECM), and are believed to control intracellular signaling pathways both physically and chemically as a mechanoreceptor. However, few studies have focused on the roles and functions of integrins in inflammation caused by excessive mechanical stress. In this study, we examined the relationship between integrins (αVβ3 and αVβ5) and the expression of inflammatory factors under mechanical loading in chondrocytes by using an integrin receptor antagonist (cilengitide). Cilengitide suppressed the gene expression of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), matrix metalloproteinase-3 (MMP-3), and MMP-13 induced by excessive mechanical stress. In addition, the protein expression of IL1-β and MMP-13 was also inhibited by the addition of cilengitide. Next, we investigated the involvement of intracellular signaling pathways in stress-induced integrin signaling in chondrocytes by using western blotting. The levels of p-FAK, p-ERK, p-JNK, and p-p38 were enhanced by excessive mechanical stress and the enhancement was suppressed by treatment with cilengitide. In conclusion, this study revealed that excessive mechanical stress may activate integrins αVβ3 and αVβ5 on the surface of chondrocytes and thereby induce an inflammatory reaction by upregulating the expression of IL-1β, TNF-α, MMP-3, and MMP-13 through phosphorylation of FAK and MAPKs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。