Gasdermin E benefits CD8+T cell mediated anti-immunity through mitochondrial damage to activate cGAS-STING-interferonβ axis in colorectal cancer

Gasdermin E 通过线粒体损伤激活结直肠癌中的 cGAS-STING-干扰素β轴,促进 CD8+T 细胞介导的抗免疫

阅读:5
作者:Bixian Luo #, Shun Zhang #, Xinbo Yu #, Dan Tan, Ying Wang, Mingliang Wang

Background

Pyroptosis belongs to a unique type of programmed cell death among which GSDME is reported to exert anti-tumor immunity. However, the underlying mechanisms of how to boost tumor-infiltrating lymphocytes and whether it could benefit the efficacy of ICIs are still unknown.

Conclusion

We presented the mechanism of GSDME in anti-tumor immunity through activating cGAS-STING-IFNβ axis mediated by mitochondrial damage, leading to more infiltration of CD8+T cells with synergistic efficacy with ICIs.

Methods

CRC samples were used to analyze its relationship with CD8+T cells. GSDME in mouse CRC cell lines CT26/MC38 was overexpressed. The infiltration of CD8+T cells in grafted tumors was determined by multiplex flow cytometric analysis and immunohistochemistry. Transcriptomic analysis was performed in cell lines to define key signatures related to its overexpression. The mechanism of how mtDNA was released by GSDME-induced mitochondrial damage and activated cGAS-STING pathway was observed. Whether GSDME benefited ICIs and the relationships with the genotypes of CRC patients were investigated.

Results

It had favorable prognostic value in CRC and was positively associated with increased number and functionality of CD8+T cells both in human samples and animal models. This was due to mitochondrial damage and activation of cGAS-STING-IFNβ pathway for the recruitment of CD8+T cells. Mechanically, GSDME overexpression enhanced N-GSDME level, leading to the mitochondrial damage and mtDNA was released into cytosol. Finally, GSDME benefited with ICIs and exhibited positive relationships with MSI in CRC patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。