Effects of Continuous Sugar Beet Cropping on Rhizospheric Microbial Communities

甜菜连续种植对根际微生物群落的影响

阅读:4
作者:Weijuan Huang, Donglei Sun, Jiantao Fu, Huanhuan Zhao, Ronghua Wang, Yuxing An

Abstract

The continuous cropping of sugar beet can result in soil degradation and a decrease in the sugar beet yield and quality. However, the role of continuous sugar beet (Beta vulgaris L. var. saccharifera) cropping in shaping the structure and function of the rhizosphere microbial community remains poorly investigated. In this study, we comparatively investigated the impact of different numbers of years of continuous sugar beet cropping on structural and functional changes in the microbial community of the rhizosphere using high-throughput sequencing and bioinformatics analysis. We collected rhizosphere soils from fields continuously cropped for one-year (T1), five-year (T5), and thirty-year (T30) periods, as well as one bulk soil (T0), in the Xinjiang Uygur Autonomous Region. The results demonstrated that continuous sugar beet cropping resulted in a significant decline in the community diversity of soil bacterial and fungal populations from T1 to T5. With continuous change in the structure of the microbial community, the Shannon diversity and observed species were increased in T30. With an abundance of pathogenic microbes, including Acidobacteria, Alternaria, and Fusarium, that were highly enriched in T30, soil-borne diseases could be accelerated, deduced by functional predictions based on 16S rRNA genes. Continuous sugar beet cropping also led to significant declines in beneficial bacteria, including Actinobacteria, Pseudomonas spp., and Bacillus spp. In addition, we profiled and analyzed predictive metabolic characteristics (metabolism and detoxification). The abundance of phenolic acid decarboxylase involved in the phenolic acid degradation pathway was significantly lower in groups T5 and T30 than that in T0 and T1, which could result in the phenolic compounds becoming excessive in long-term continuous cropping soil. Our results provide a deeper understanding of the rhizosphere soil microbial community's response to continuous sugar beet cropping, which is important in evaluating the sustainability of this agricultural practice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。