Effects of treadmill exercise on PI3K/AKT/GSK-3β pathway and tau protein in high-fat diet-fed rats

跑台运动对高脂饮食大鼠PI3K/AKT/GSK-3β通路及tau蛋白的影响

阅读:7
作者:Jae-Hoon Jeong, Eun-Bum Kang

Conclusion

After a 20-week HFD, the experimental animals exhibited increased weight, as well as impaired insulin resistance and blood glucose metabolism. HFD rats demonstrated abnormal insulin signaling and tau hyperphosphorylation in the cerebral cortex, as well as memory impairments that suggested reduced cerebral function. However, TE reduced AVF, improved insulin resistance in the peripheral tissues by increasing insulin sensitivity, and alleviated memory impairments by restoring insulin signaling and reducing tau hyperphosphorylation in the cerebral cortex.

Methods

Rats were separated into Normal Diet-Control, HFD-Control, and HFD-TE groups. TE loads were gradually increased. A passive avoidance test was used to evaluate cognitive function. Western blots were used to examine the abundance of the insulin receptor,phosphoinositide 3-kinase, protein kinase B, glycogen synthase kinase-3β, and tau proteins in the cerebral cortex; immunohistochemical analyses were used to examine the abundance of hyperphosphorylated tau in the cerebral cortex.

Purpose

This study aimed to clearly evaluate the effects of obesity on cerebral health. Thus, we induced obesity in rats using a long-term high-fat diet (HFD), then investigated its effects on insulin signaling and tau hyperphosphorylation. Additionally, we examined the effects of 8 weeks of treadmill exercise (TE) on insulin signaling and tau hyperphosphorylation.

Results

TE in HFD-fed rats resulted in a significant lowering of bodyweight, abdominal visceral fat (AVF), the area under the glucose response curve, and the homeostatic model assessment-insulin resistance index, while it improved working memory. In addition, TE in HFD-fed rats decreased tau hyperphosphorylation and aggregation, while increasing insulin signaling-related protein activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。